Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Immunol ; 13: 896310, 2022.
Article in English | MEDLINE | ID: covidwho-2114267

ABSTRACT

To prevent SARS-CoV-2 infections and generate long-lasting immunity, vaccines need to generate strong viral-specific B and T cell responses. Previous results from our lab and others have shown that immunizations in the presence of an OX40 agonist antibody lead to higher antibody titers and increased numbers of long-lived antigen-specific CD4 and CD8 T cells. Using a similar strategy, we explored the effect of OX40 co-stimulation in a prime and boost vaccination scheme using an adjuvanted SARS-CoV-2 spike protein vaccine in C57BL/6 mice. Our results show that OX40 engagement during vaccination significantly increases long-lived antibody responses to the spike protein. In addition, after immunization spike protein-specific proliferation was greatly increased for both CD4 and CD8 T cells, with enhanced, spike-specific secretion of IFN-γ and IL-2. Booster (3rd injection) immunizations combined with an OX40 agonist (7 months post-prime) further increased vaccine-specific antibody and T cell responses. Initial experiments assessing a self-amplifying mRNA (saRNA) vaccine encoding the spike protein antigen show a robust antigen-specific CD8 T cell response. The saRNA spike-specific CD8 T cells express high levels of GrzmB, IFN-γ and TNF-α which was not observed with protein immunization and this response was further increased by the OX40 agonist. Similar to protein immunizations the OX40 agonist also increased vaccine-specific CD4 T cell responses. In summary, this study compares and contrasts the effects and benefits of both protein and saRNA vaccination and the extent to which an OX40 agonist enhances and sustains the immune response against the SARS-CoV-2 spike protein.


Subject(s)
COVID-19 , Vaccines , Animals , COVID-19/prevention & control , Humans , Interleukin-2 , Mice , Mice, Inbred C57BL , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2057751

ABSTRACT

To prevent SARS-CoV-2 infections and generate long-lasting immunity, vaccines need to generate strong viral-specific B and T cell responses. Previous results from our lab and others have shown that immunizations in the presence of an OX40 agonist antibody lead to higher antibody titers and increased numbers of long-lived antigen-specific CD4 and CD8 T cells. Using a similar strategy, we explored the effect of OX40 co-stimulation in a prime and boost vaccination scheme using an adjuvanted SARS-CoV-2 spike protein vaccine in C57BL/6 mice. Our results show that OX40 engagement during vaccination significantly increases long-lived antibody responses to the spike protein. In addition, after immunization spike protein-specific proliferation was greatly increased for both CD4 and CD8 T cells, with enhanced, spike-specific secretion of IFN-γ and IL-2. Booster (3rd injection) immunizations combined with an OX40 agonist (7 months post-prime) further increased vaccine-specific antibody and T cell responses. Initial experiments assessing a self-amplifying mRNA (saRNA) vaccine encoding the spike protein antigen show a robust antigen-specific CD8 T cell response. The saRNA spike-specific CD8 T cells express high levels of GrzmB, IFN-γ and TNF-α which was not observed with protein immunization and this response was further increased by the OX40 agonist. Similar to protein immunizations the OX40 agonist also increased vaccine-specific CD4 T cell responses. In summary, this study compares and contrasts the effects and benefits of both protein and saRNA vaccination and the extent to which an OX40 agonist enhances and sustains the immune response against the SARS-CoV-2 spike protein.

3.
J Transl Med ; 20(1): 391, 2022 09 04.
Article in English | MEDLINE | ID: covidwho-2009424

ABSTRACT

Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.


Subject(s)
COVID-19 , Melanoma , Biomarkers , Humans , Immunotherapy/methods , Italy , Melanoma/genetics , Pandemics , Tumor Microenvironment
4.
J Exp Clin Cancer Res ; 40(1): 240, 2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1322942

ABSTRACT

BACKGROUND: The yearly Think Tank Meeting of the Italian Network for Tumor Biotherapy (NIBIT) Foundation, brings together in Siena, Tuscany (Italy), experts in immuno-oncology to review the learnings from current immunotherapy treatments, and to propose new pre-clinical and clinical investigations in selected research areas. MAIN: While immunotherapies in non-small cell lung cancer and melanoma led to practice changing therapies, the same therapies had only modest benefit for patients with other malignancies, such as mesothelioma and glioblastoma. One way to improve on current immunotherapies is to alter the sequence of each combination agent. Matching the immunotherapy to the host's immune response may thus improve the activity of the current treatments. A second approach is to combine current immunotherapies with novel agents targeting complementary mechanisms. Identifying the appropriate novel agents may require different approaches than the traditional laboratory-based discovery work. For example, artificial intelligence-based research may help focusing the search for innovative and most promising combination partners. CONCLUSION: Novel immunotherapies are needed in cancer patients with resistance to or relapse after current immunotherapeutic drugs. Such new treatments may include targeted agents or monoclonal antibodies to overcome the immune-suppressive tumor microenvironment. The mode of combining the novel treatments, including vaccines, needs to be matched to the patient's immune status for achieving the maximum benefit. In this scenario, specific attention should be also paid nowadays to the immune intersection between COVID-19 and cancer.


Subject(s)
Neoplasms/immunology , Neoplasms/therapy , Antibodies, Monoclonal/immunology , COVID-19/immunology , Humans , Immunity/immunology , Immunotherapy/methods , Italy , Medical Oncology/methods
5.
J Hum Lact ; 37(3): 492-498, 2021 08.
Article in English | MEDLINE | ID: covidwho-1322900

ABSTRACT

BACKGROUND: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has infected over 127 million people worldwide, with almost 2.8 million deaths at the time of writing. Since no lactating individuals were included in initial trials of vaccine safety and efficacy, research on SARS-CoV-2 vaccination in lactating women and the potential transmission of passive immunity to the infant through mother's milk is needed to guide patients, clinicians, and policy makers on whether to recommend immunization during the worldwide effort to curb the spread of this virus. RESEARCH AIMS: (1) To determine whether SARS-CoV-2 specific immunoglobins are found in human milk after vaccination, and (2) to characterize the time course and types of immunoglobulins present. METHODS: A longitudinal cohort study of lactating women (N = 7) who planned to receive both doses of the Pfizer-BioNTech or Moderna SARS-CoV-2 vaccine between December 2020 and January 2021 provided milk samples. These were collected pre-vaccination and at 11 additional timepoints, with the last sample at 14 days after the second dose of vaccine. Samples were analyzed for levels of SARS-CoV-2 specific immunoglobulins A and G (IgA and IgG). RESULTS: We observed significantly elevated levels of SARS-CoV-2 specific IgG and IgA antibodies in human milk beginning approximately 7 days after the initial vaccine dose, with an IgG-dominant response. CONCLUSIONS: Maternal vaccination results in SARS-CoV-2 specific immunoglobulins in human milk that may be protective for infants.


Subject(s)
COVID-19 , SARS-CoV-2 , Breast Feeding , COVID-19 Vaccines , Female , Humans , Infant , Lactation , Longitudinal Studies , Milk, Human , Mothers , Vaccination
6.
Clin Cancer Res ; 27(10): 2678-2697, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-1015729

ABSTRACT

Five years ago, the Melanoma Research Foundation (MRF) conducted an assessment of the challenges and opportunities facing the melanoma research community and patients with melanoma. Since then, remarkable progress has been made on both the basic and clinical research fronts. However, the incidence, recurrence, and death rates for melanoma remain unacceptably high and significant challenges remain. Hence, the MRF Scientific Advisory Council and Breakthrough Consortium, a group that includes clinicians and scientists, reconvened to facilitate intensive discussions on thematic areas essential to melanoma researchers and patients alike, prevention, detection, diagnosis, metastatic dormancy and progression, response and resistance to targeted and immune-based therapy, and the clinical consequences of COVID-19 for patients with melanoma and providers. These extensive discussions helped to crystalize our understanding of the challenges and opportunities facing the broader melanoma community today. In this report, we discuss the progress made since the last MRF assessment, comment on what remains to be overcome, and offer recommendations for the best path forward.


Subject(s)
COVID-19/prevention & control , Medical Oncology/methods , Melanoma/therapy , Practice Guidelines as Topic , SARS-CoV-2/isolation & purification , Skin Neoplasms/therapy , Biomedical Research/methods , Biomedical Research/trends , COVID-19/epidemiology , COVID-19/virology , Humans , Medical Oncology/organization & administration , Medical Oncology/trends , Melanoma/diagnosis , SARS-CoV-2/physiology , Skin Neoplasms/diagnosis
7.
J Clin Transl Sci ; 5(1): e10, 2020 Jun 11.
Article in English | MEDLINE | ID: covidwho-594070

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has created a high demand on personal protective equipment, including disposable N95 masks. Given the need for mask reuse, we tested the feasibility of vaporized hydrogen peroxide (VHP), ultraviolet light (UV), and ethanol decontamination strategies on N95 mask integrity and the ability to remove the infectious potential of SARS-CoV-2. METHODS: Disposable N95 masks, including medical grade (1860, 1870+) and industrial grade (8511) masks, were treated by VHP, UV, and ethanol decontamination. Mask degradation was tested using a quantitative respirator fit testing. Pooled clinical samples of SARS-CoV-2 were applied to mask samples, treated, and then either sent immediately for real-time reverse transcriptase-polymerase chain reaction (RT-PCR) or incubated with Vero E6 cells to assess for virucidal effect. RESULTS: Both ethanol and UV decontamination showed functional degradation to different degrees while VHP treatment showed no significant change after two treatments. We also report a single SARS-CoV-2 virucidal experiment using Vero E6 cell infection in which only ethanol treatment eliminated detectable SARS-CoV-2 RNA. CONCLUSIONS: We hope our data will guide further research for evidenced-based decisions for disposable N95 mask reuse and help protect caregivers from SARS-CoV-2 and other pathogens.

8.
J Immunother Cancer ; 8(1)2020 05.
Article in English | MEDLINE | ID: covidwho-220167

ABSTRACT

The pandemic caused by the novel coronavirus SARS-CoV-2 has placed an unprecedented burden on healthcare systems around the world. In patients who experience severe disease, acute respiratory distress is often accompanied by a pathological immune reaction, sometimes referred to as 'cytokine storm'. One hallmark feature of the profound inflammatory state seen in patients with COVID-19 who succumb to pneumonia and hypoxia is marked elevation of serum cytokines, especially interferon gamma, tumor necrosis factor alpha, interleukin 17 (IL-17), interleukin 8 (IL-8) and interleukin 6 (IL-6). Initial experience from the outbreaks in Italy, China and the USA has anecdotally demonstrated improved outcomes for critically ill patients with COVID-19 with the administration of cytokine-modulatory therapies, especially anti-IL-6 agents. Although ongoing trials are investigating anti-IL-6 therapies, access to these therapies is a concern, especially as the numbers of cases worldwide continue to climb. An immunology-informed approach may help identify alternative agents to modulate the pathological inflammation seen in patients with COVID-19. Drawing on extensive experience administering these and other immune-modulating therapies, the Society for Immunotherapy of Cancer offers this perspective on potential alternatives to anti-IL-6 that may also warrant consideration for management of the systemic inflammatory response and pulmonary compromise that can be seen in patients with severe COVID-19.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Immunotherapy , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/drug therapy , Societies, Medical , Adoptive Transfer , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Humans , Inflammation/complications , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Interferon-gamma/antagonists & inhibitors , Interleukin-1/antagonists & inhibitors , Interleukin-17/antagonists & inhibitors , Interleukin-23/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Janus Kinases/antagonists & inhibitors , Neoplasms/immunology , Neoplasms/therapy , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , STAT Transcription Factors/antagonists & inhibitors , Severe Acute Respiratory Syndrome/pathology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL